Системы впрыска топлива современных двигателей внутреннего сгорания: бензиновые и дизельные системы

Описание преимуществ инжекторных систем

По сравнению с карбюраторами системы питания инжекторного двигателя имеют следующие достоинства:

  1. Более тщательная дозировка количества топливной смеси позволяет существенно экономить общий расход.
  2. Использование датчиков, следящих за характеристиками топливных смесей и выхлопных газов, приводит к снижению токсичности выхлопа.
  3. Опережение зажигания, регулировка угла в соответствии с режимами двигателя способствует росту мощности почти на 10%.
  4. При изменениях нагрузки происходит мгновенная корректировка системой впрыска состава топливно-воздушной смеси.
  5. Наличие гарантированного облегченного запуска при любой погоде.
  6. Уменьшение количества углеводородов в отработанных газах

Недостатки инжекторных двигателей:

  • высокие цены на ремонт и обслуживание;
  • многие узлы и детали не подлежат восстановлению, возникает необходимость их полной замены;
  • повышенные требования к качеству бензина;
  • потребность в специализированном диагностическом, обслуживающем и ремонтном оборудовании.

Системы распределённого впрыска топлива

Каждый цилиндр системы распределённого впрыскатоплива обслуживается собственной электромагнитной форсункой. Каждаяфорсунка такой системы впрыскивает топливо во впускной коллектор предвпускными клапанами каждого цилиндра. Таким образом, только частьвнутреннего объёма впускного коллектора работающего двигателязаполняется подготовленной топливной смесью. Как и в системе точечноговпрыска топлива, здесь впрыск осуществляется не непрерывной струёйтоплива, а подаётся порциями. Количество подаваемого топливарегулируется путём изменения продолжительности открытого состоянияфорсунки.Электромагнитные топливные форсунки имеютнекоторую инерционность. Проявляется эта инерционность как задержкаоткрытия и задержка закрытия клапана форсунки относительно управляющегонапряжения. Задержка открытия клапана форсунки может составлять около1,5 mS, кроме того, она может изменяться с изменением величинынапряжения на аккумуляторной батарее. Задержка закрытия клапана форсункиможет составлять около 1,0 mS. Когда двигатель работает под нагрузкой,длительность впрыска топлива может составлять несколько единиц или дажедесятки миллисекунд, то есть -длительность впрыска топлива при этомзначительно превышает время задержки срабатывания клапана форсунки, и засчёт этого инерционность форсунки сказывается мало заметно.Когда двигатель работает при малых нагрузках илина холостом ходу, длительность впрыска значительно уменьшается, истановится сравнимой с временем задержки срабатывания клапана форсунки.Из-за этого, инерционность форсунки может сказываться значительносильнее и точность дозирования количества впрыскиваемого топлива можетсильно снизиться. Поэтому, для таких форсунок не используют управляющиеимпульсы продолжительностью менее 1,5 mS. Кроме того, инерционностьфорсунок, обслуживающих разные цилиндры одного и того же двигателя созначительным пробегом может заметно различаться, что вноситдополнительную погрешность дозирования малых порций топлива.

Классификация и устройство систем впрыска

Различия инжекторных механизмов определяются способом, применяемым для изготовления смеси бензина с воздухом.

Классификация в основном проводится по типу впрыска:

  • центральным впрыском;
  • распределительным;
  • непосредственным;
  • комбинированным.

Центральный впрыск (моновпрыск)

Эта система заменяет карбюратор, работает на одной форсунке. Моновпрыск почти не используется из-за несоответствия требованиям экологическим стандартам, встречается на очень старых машинах. Но эти механизмы простые и надежные благодаря расположению форсунки на месте с хорошим воздухообменом, в пускном коллекторе.

  • регулятор давления — предотвращает образование воздушных пробок, обеспечивает неизменное давление 0,1 Мпа;
  • форсунка – обеспечивает подачу бензина в коллектор;
  • дроссельная заслонка (механическая, электрическая) – регулирует подачу воздуха;
  • блок управления (память, микропроцессор) — содержит информацию, необходимую для инжекции;
  • датчики температуры, состояние коленвала, дроссельной заслонки.

Распределенный впрыск

Этот тип более современный и экологичный. Хотя, отличительной особенностью является лишь то, что в этой системе уже на каждый цилиндр приходится своя форсунка. Только монтируется она тоже в впускном коллекторе, только каждая в своем отдельном патрубке. Электронные системы контролируют дозировку топлива. Самые прогрессивные форсунки в этом плане принадлежат компании Bosch.

Непосредственный впрыск

Бензин одновременно с воздухом подается прямо в камеры сгорания. Преимущество системы с непосредственным впрыском — точный расчет составляющих для топливосмеси. Процент экологически опасных выбросов снижается благодаря почти стопроцентному сгоранию топливосмеси.

Устройство механизма с непосредственной инжекцией:

  • насос, подающий бензин;
  • устройство, регулирующее давление;
  • рампа, оснащенная предохранительным клапаном;
  • датчик, отображающий параметры давления;
  • форсунки.

Недостатки:

  • высокие требования к качественному составу топлива;
  • сложная для производителей конструкция;
  • необходимость в давлении от 5 МПа.

Зато инжекторные системы этого типа самые современные, перспективные.

Комбинированный впрыск

Чтобы снизить количество выбросов и выполнить требования Евро-6, в Volkswagen была разработана комбинированная система инжекции, объединившая распределительную с непосредственной. Системы блоком управления активируются по очереди, ориентируясь на режим работы. Эта система питания самая перспективная с точки зрения экологической безопасности.

Комбинированное устройство состоит из:

  • насоса, подающего топливо;
  • деталей непосредственного механизма (форсунок, установленных в камеры сгорания, рампы, поддерживающей давление 20 Мпа);
  • элементов распределительной системы (форсунок, установленных в каналы коллектора, рампы низкого давления).

Основные преимущества инжекторной системы

Современные специалисты отмечают сразу несколько преимуществ подобных видов систем подачи топлива. А именно:

  1. Удалось достигнуть значительного снижения расхода топлива. Это стало возможным благодаря четкому контролю подачи топлива.
  2. Подобная система способствует повышению мощности. Для сравнения карбюраторные двигатели внутреннего сгорания имеют мощность на среднем на 10% меньше нежели идентичные инжекторные.
  3. Автоматизированная система впрыска. Стоит помнить, что в карбюраторных автомобилях функцию регулировки выполняет подсос и регулировочные винты. В данном же случае водителю не придется тратить время, и система все сделаем за него.

Выходная мощность и эффективность

При работе двигателей с искровым зажи­ганием в режиме частичной нагрузки имеет место ухудшение рабочих характеристик в результате потерь в цикле подачи заряда (дросселирования), плохого управления про­цессом (пиковые давления ниже 30 бар) и повышения потерь трения в двигателе в этом диапазоне нагрузок. Поскольку даже при скоростях движения легковых автомобилей свыше 100 км/ч большинство двигателей продолжают работать в диапазоне частичных нагрузок, весьма успешными оказываются меры, направленные на повышение к.п.д. К таким мерам относятся:

  • Уменьшение рабочего объема;
  • Отключение цилиндра (например, на двига­телях V8 и V12);
  • Исключение дросселирования (примене­ние систем с послойным распределением заряда топлива, рециркуляция отработавших газов, изменение синхронизации клапанов);
  • Увеличение степени сжатия;
  • Изменение передаточного отношения трансмиссии с целью снижения величины оборотов двигателя.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Чем отличается инжектор от карбюратора

В карбюраторе в ходе рабочего цикла формируется насыщенная воздушно-топливная смесь, которая необходима двигателю для работы. В двигатель при этом поступает равное количество смеси, вне зависимости от того, на скольких оборотах в конкретный момент работает «сердце» автомобиля. В связи с этим системой потребляется большое количество топлива и, следовательно, окружающая среда излишне загрязняется выхлопными газами.

При использовании инжекторных систем в двигатель подаётся обеднённая воздушно-топливная смесь в дозировке, рассчитанной центральным блоком управления. Точная дозировка позволяет существенно сократить расход, обеспечить экономию средств и снизить объём вредных выбросов в атмосферу.

Использование инжектора позволяет в современных проектах добиться увеличения мощностей двигателя до 10% и модернизировать динамические свойства машины. Инжектор не подвержен воздействию перепадов температур, он не замерзает в холодный осенне-зимний период и не перегревается в летнюю жару. Однако инжектор более «придирчив» к качеству горючего, чем карбюратор.

При этом стоит отметить, что «кормить» карбюратор низкокачественным топливом также не рекомендуется, чтобы избежать серьёзных проблем с ходовой частью. Он может быть неприхотлив в обслуживании, по сравнению с инжектором, но только при условии, что водитель заправляет авто исключительно качественным горючим. В суровых российских реалиях такие системы подвержены частым поломкам в результате использования бензина низкого качества. К плюсам в такой ситуации стоит отнести возможность самостоятельно провести ремонт и доступную стоимость запчастей для агрегата.

Инжектор, напротив, ломается реже и в целом более надёжен, но его ремонт представляет собой сложную процедуру. Провести диагностику без специального сервисного оборудования не представляется возможным, а замена узлов может потребовать серьёзных капиталовложений.

Источник

Почему дизельному двигателю нужен регулятор?

У дизельного двигателя не существует положения управляющей рейки, которое бы позволило дизельному двигателю точно поддерживать свои обороты без помощи регулятора. На холостом ходу, к примеру, без регулятора числа оборотов, обороты двигателя будут либо падать, пока двигатель не остановится, либо будут продолжать увеличиваться, что, в конце концов, приведет к саморазрушению двигателя.

Последняя возможность обязана тому, что дизель работает с избытком воздуха, что означает отсутствие эффективного дросселирования поступающей в двигатель смеси при возрастании его оборотов.

К примеру, если холодный двигатель был заведен и остался работать на холостом ходу, тогда как продолжает впрыскиваться начальное количество топлива, то характерное трение вскоре начнет снижаться. То же самое относится к нагрузке двигателя от приводимых от него агрегатов, таких как генератор, воздушный компрессор, ТНВД и т.д. Это означает, что если положение управляющей реики осталось неизменным и рейка не втягивалась для уменьшения количества подаваемого топлива (как сделал бы регулятор), то обороты двигателя будут возрастать все больше и больше (из-за указанного выше падения трения), пока они не достигнут точки саморазрушения. Другими словами, является обязательным, чтобы дизель был оснащен регулятором числа оборотов. В настоящее время для рядных ТНВД используются либо механические (центробежные) регуляторы либо система электронного управления дизельным двигателем (EDC).

Пневматические регуляторы, управляемые давлением впускного коллектора устанавливались ранее на небольшие ТНВД. От них пришлось отказаться в результате возросших требований к точности регулирования и к работе регулятора.

Проверка периодичности Важным

впрыска оценочным параметром работоспособности системы частности, в впрыска, форсунок, является периодичность впрыска. впрыска Периодичностью является время между двумя открытиями последовательными клапана одной и той же форсунки. впрыска Продолжительность проверяют, подсоединяя один провод прибора измерительного к одной клемме форсунки, другой подсоединяют провод на «массу». Стартером проворачивают коленчатый двигателя вал и проверяют наличие сигнала на осциллографе. сигналы Если есть, двигатель запускают и дают немного ему поработать на холостом ходу. Запоминают сигнала форму. Резко открывают дроссель и разгоняют 3000 до двигатель об/мин. Во время ускорения продолжительность открытия импульса клапана форсунки должна увеличиваться, после, затем выхода на постоянную частоту вращения вала коленчатого, быть равной или чуть чем, меньшей на холостом ходу. Дроссель отпускают. система Если оборудована устройством отсечки топлива на холостом принудительном ходу, сигнал должен пропасть, и на будет экране наблюдаться прямая линия. При холодного запуске двигателя смесь необходимо обогащать, продолжительность поэтому импульса должна быть больше. импульса Продолжительность уменьшается по мере прогрева двигателя.

Попарно-параллельный впрыск топлива

Для уменьшения зависимости качества подготовкитопливовоздушной смеси от момента впрыска топлива, а так же дляулучшения точности дозирования топлива на переходных режимах работыдвигателя, топливные форсунки были разделены на группы согласно порядкуработы цилиндров и соединены попарно-параллельно — половина форсуноксоединена параллельно и управляется своим выходным силовым транзисторомблока управления двигателем, другая половина форсунок так же соединенапараллельно и управляется своим, вторым выходным силовым транзисторомблока управления двигателем.Управление форсунками одной группы происходитодновременно — все форсунки одной группы работают синхронно. Когдафорсунки первой группы впрыскивают топливо, форсунки второй группызакрыты, и наоборот. При этом, первая и вторая группы форсунок, так жекак и в системе параллельного впрыска топлива, впрыскивают топливодважды за один цикл работы 4-х тактного двигателя (за два оборотаколенвала).Осциллограммы напряжения сигналов системыуправления 4-х цилиндрового 4-х тактного двигателя, осуществляющейпопарно-параллельный впрыск топлива, демонстрирующие схему впрыскатоплива данной системы. Порядок работы цилиндров 1 — 3 — 4 — 2. В данномслучае в первую пару объединены форсунки, обслуживающие цилиндры №1 и№4, а во вторую пару объединены форсунки, обслуживающие цилиндры №2 и№3. Но встречаются системы, где при таком же порядке работы цилиндровдвигателя, форсунки объединены в пары по-другому.напряженияуправляющихимпульсовтопливнойнапряженияуправляющихимпульсовтопливнойнапряженияуправляющихимпульсовтопливнойнапряженияуправляющихимпульсовтопливнойфорсункой форсункой форсункой форсункой1Осциллограмма 1-го цилиндра.2Осциллограмма 2-го цилиндра.3Осциллограмма 3-го цилиндра.4Осциллограмма 4-го цилиндра.5Осциллограмманапряжения выходного сигнала датчика положения / частоты вращенияколенчатого вала. За один полный оборот коленвала датчик генерирует 58импульсов и один пропуск, продолжительность которого соответствуетпродолжительности двух импульсов. Соответственно, за один полный циклработы 4-х тактного двигателя (за два оборота коленвала) датчикгенерирует такие пропуски дважды.7 Импульс синхронизации с моментом зажигания в первом цилиндре.Следует заметить, что в момент пуска двигателяблок управления двигателем переключается на параллельную схему впрыскатоплива, то есть, включает и выключает все топливные форсункиодновременно.

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Рабочий процесс поддерживается движением воздуха в цилиндрах. В зависимости от нагрузочного и скоростного режимов регулируется интенсивность движения воздуха, при этом, обеспечивается создание гомогенной или послойной смеси.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

Увеличение мощности двигателя

 Современные системы впрыска позволяют поднять давление распыления до 2000 Вар. Выше создать давление не получается из за конструктивных особенностей двигателя внутреннего сгорания.  То есть двигатель может не справиться с возникающим давлением и разрушится

Увеличение объёма воздуха в камере сгорания

Мощность двигателя можно повысить за счет увеличения объема воздуха поступающего в камеру сгорания. Так как воздух содержит кислород. И чем его больше тем интенсивнее происходит сгорание топлива.  Цилиндр имеет рабочий объём, который изменить нельзя. Но можно в этот объём разместить большее количество воздуха. Если предварительно его сжать.

 Происходит это с помощью турбокрмпрессора.  Он создаёт избыточное давление поступающего в цилиндр воздуха. В результате его попадет большее количество. Если бы поршень закачивал воздух самостоятельно. Но в результате попадания воздуха в турбокомпрессор он нагревается от температуры турбины и от создаваемого им сжатия.  Требуется его охлаждение.

При охлаждении движение молекул замедляется. В результате чего они начинают занимать меньший  объём в пространстве. Технически  охлаждение  воздуха происходит  путем применения радиатора.  Его называют интеркулер. В интеркулере воздух охлаждается встречным потоком воздуха. При движении автомобиля. Сжатый воздух дополнительно охлаждается и подаётся в цилиндры. Но применение интеркулера возможно  только при наличии турбокомпрессора. Потому что если применять его отдельно, он затруднит поступление воздуха в цилиндры. И повышения мощности не произойдет.

Топливо попавшее в цилиндр должно сгореть полностью. От этого зависит эффективная работа двигателя. Безусловно дополнительная порция воздуха помогает это сделать. Но не решает проблемы в целом. Двигатель работает в разных режимах. При увеличении оборотов. Уменьшается время на горение топлива. А не полное его сгорания снижает мощность работы. В связи с уменьшением  возникающего давления на поршень. Автомобили несут на себе разную нагрузку.  При одних и тех же оборотах двигателя требуется разное количество топлива для движения автомобиля. Поэтому постоянно разрабатываются различные системы впрыска топлива.  Которые пытаются более точно регулировать объём поступающего топлива в цилиндры. При работе на разных режимах работы двигателя.

Датчики топливной системы

При разной комплектации автомобиля может отличаться количество датчиков. Устанавливать их все, для нормальной работы, необязательна.

  1. Датчик кислорода. Он рассчитывает данные по содержанию кислорода в общем объеме отработанных газов.
  2. Датчик положения коленвала. Автомобиль не заведется при поломки данного датчика. Вы не сможете добраться до сервиса без помощи эвакуатора при неполадках с ДПКВ.
  3. Датчик массового расхода воздуха Поступающий объем воздуха и его расход двигателем рассчитывается именно этим датчиком.
  4. Датчик температуры охлаждающей жидкости. Для контроля температурного уровня охлаждающей жидкости, устанавливается данный датчик. Сигнал отправляется на блок управления, но на панели применяется другой датчик.
  5. Датчик скорости. Подает на приборную панель количество пробега.
  6. Датчик положения дроссельной заслонки Нагрузка, оказываемая на мотор, рассчитывается этим датчиком.
  7. Датчик детонации.При определении детонации в автомобиле, включается система ее гашения.
  8. Датчик фазы. Синхронизирует впрыск топлива. В аварийной ситуации, переводит двигатель на параллельно— попарную подачу горючего.

В итоге можно сказать, что система впрыска топлива сильно продвинулась за последние пятьдесят лет в своем технологическом совершенстве. Конечно, недостатки все еще остались, но однозначно, массовость в машиностроении, экология — все это непосредственно влияет на развитие двигателей автомобилей. Сейчас невероятно актуальна экологическая составляющая нашей планеты, поэтому разработчики автомобильных двигателей не имеют шансов остаться на том же уровне, что и сейчас, не вводя все новые и новые усовершенствованные методы переработки горючей смеси в двигателе.

Чем отличается инжекторный двигатель от карбюраторного

В работе и устройстве инжектора и карбюратора можно выделить следующие отличия:

  • В инжекторном двигателе подача смеси газов и топлива осуществляется в специальную камеру, в карбюраторном двигателе образование топливовоздушной смеси происходит в самом карбюраторе;
  • Смесь в инжекторном двигателе подается форсунками в цилиндры и в впускной коллектор принудительно. В карбюраторе этот процесс происходит само по себе;
  • В инжекторном двигателе форсунки подают строго дозированное количество топлива;
  • Инжекторная система обеспечивает мощность двигателя на 15% больше, чем карбюратор;
  • Инжектор более экономичен и экологически безопасен, чем карбюратор.

https://youtube.com/watch?v=XhSyHJkh4xg

Плюсы и минусы использования

Главной особенностью двигателя gdi является подача топлива напрямую в цилиндр, что сокращает время цикла и существенно повышает мощность автомобиля (до 15%). Помимо этого уменьшается расход топлива (до 25%) и повышается экологичность выхлопа. Это обеспечивает более эффективную эксплуатацию автомобиля в городских условиях.

Для автомобилей, на которых установлен GDI двигатель, проблемы эксплуатации связаны прежде всего со следующим перечнем недостатков:

Необходимость нейтрализации отработавших газов при работе мотора на малых оборотах. При образовании обедненной топливно-воздушной смеси в выхлопных газах образуется много вредных компонентов, для устранения которых требуется установка системы рециркуляции отработавших газов.
Повышенные требования к топливу и маслу. Наилучшим бензином для GDI считается топливо с октановым числом 101, который практически недоступен на отечественном рынке.
Высокая стоимость производства двигателей и ремонта. Весомую долю проблем доставляют форсунки, подающие бензин в цилиндры. Они должны выдерживать высокое давление. Если они забиваются по причине некачественного топлива, их невозможно разобрать и почистить – форсунки подлежат только замене

Их стоимость в несколько раз выше, чем у обычных.
Повышенное внимание к системе фильтрации. Чистка и замена воздушного фильтра в такой системе должна производиться чаще, поскольку качество поступающего воздуха напрямую связано с состоянием форсунок.

Отечественные автомобилисты весьма скептически относятся к системе непосредственного впрыска, что обусловлено высокой стоимостью обслуживания автомобиля. С другой стороны, такие двигатели считаются передовой технологией, которая развивается и активно внедряется в автомобилестроение по всему миру.

Понравилась статья? Поделиться с друзьями:
Chevrolet - лучшая машина
Добавить комментарий